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Abstract— The problem of heat transfer to a finite wedge-shaped fin in a laminar flow is considered. The

energy equations for the fluid and the solid body are solved simultaneously under the conditions of con-

tinuity in heat flux and temperature at the interface. The influence of heat conduction in the wedge is

investigated using an integral method of solution. This method is shown to be in good agreement with a

numerical method based on the Blasius technique and also with experiments provided that radiation is
taken into account. Numerical results are given for various wedge materials and fluids.

NOMENCLATURE 6, temperature excess = T — T, :
B, fin breadth; k, heat diffusivity ;
L, finlength; 4, heat conductivity;
m, dimensionless constant ; v,  kinematic viscosity :
n, dimensionless constant o, Stefan-Boltzmann constant:
Nu, Nusselt number ,  angular coordinate, Fig. 1:
Pr, Prandtl number Y, stream function.
Q, total heat flow from the fin:
Re, Reynolds number ; Subscripts
r, radial coordinate, Fig. 1; b,  base of the wedge :
T, temperature: ¢, convection;
U, potential velocity; 1 fluid ;
u, v, boundary layer velocities: r, radiation:
x, coordinate along the wall, Fig. 1: s, solid or surface;
y,  coordinate normal to the wall, Fig. 1: t, thermal boundary layer:
z,  transformed coordinate. o.  velocity boundary layer ;

o, free stream.
Greek letters

@, half of leading edge angle, Fig. 1: INTRODUCTION

B,  dimensionless parameter : I~ THE analysis of heat convection to solid bodies
8, boundary layer thickness: it is common practice to prescribe the tempera-
4, dimensionless parameter ; ture, the heat flux or a combination of the two
g,  emissivity; at the solid—fluid interfaces. In most real cases,
n,  dimensionless coordinate: however, the boundary conditions cannot be

. known a priori. It is then necessary to solve the
* Presently at Volvo Flygmotor AB, Trollhattan, Sweden. energy equations for the fluid and the solid body
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simultaneously under the conditions of con-
tinuity in heat flux and temperature at the
boundaries. This problem is rather complicated
and it has received relatively little attention in
the literature.

In some works, simplifying assumptions as
regards the flow field are introduced. Thus,
Perelman [1] studied the problem of slip flow
around a body with distributed heat sources.
Chu and Bankoff [2] treated heat transfer to
slug flow between flat plates and in a circular
tube. Sell and Hudson (3] considered the prob-
lem of heat transfer to a slug flow past a flat plate
and Davies et al. [4] studied the effect of the
conduction in the wall on the heat transfer to
Poiseuille-Couette flow between parallel plates.
Lastly, an approximate method suitable for
cases in which the boundary conditions at the
wall is either an approximately constant tem-
perature or an approximately constant heat
flux were given by Rotem [5].

Especially simple solutions are obtained if a
uniform temperature is prescribed at the solid-
fluid interfaces. Here, we will investigate the
exactness of such solutions for a wedge [6] by
comparing them with the solutions to the more
realistic case of continuity in heat flux and tem-
perature at the interfaces. For this investigation,
we develop an integral method which is shown
to be in good agreement with the numerical
method based on an extension of the Blasius
technique [7-9] and also with experiments pro-
vided that radiation is taken into account.

AN APPROXIMATE SOLUTION
Consider laminar flow of an incompressible
fluid past a finite wedge as shown in Fig. 1.
With the potential wedge flow velocity given by
U= uyx™ (1)
where

&
m =

n—a

and u, a constant, and with
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6, = 49, (3)

where 4 is a constant, we obtain the following
relation by applying the conventional momen-
tum and energy integral methods [6]

1260 m
3T 300 m GM))

L
[0 x)xtm~DI2 dx
37+300m°

630 Pr

4 (F(A)

BS(L)L("' +1)2 (4)

from which 4 may be found once 6, is known.

FiG. 1. The system considered.

For A4 < 1 we have

)= e dt = 2o at gt ()
Gll) = g 47 — g 0+ s 8% —
and for 4 > 1
)=~ 24 244247

—5@ _3+1‘21§6A—4 (6)
G(A):i%_%) —1+_8% —3_3_01_22 N

If the wedge is sufficiently thin 1.e. m < 1, then
its temperature may be assumed to vary with r
only, ie. to be equal to 0r). This satisfies the
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demand for continuity in temperature across
the fluid-solid interface where r = x.

Then, with a linearized temperature depend-
ence of the radiative heat flux, a heat balance
for an element of the wedge as shown in Fig. 1
gives [10]

A L3 (x (—195)
Trdx U odx

- [2& (:7’1 + 300m _”-0)} m~ 172
A 1260 v,/ °

+ 40T, 3] 6, (7

If the temperature is prescribed at the base of the
wedge, the boundary conditions to equation {7}
will be

840 finite

84{L) = 6, = constant.

(3)
®

We now have two relations, i.e. equations {4) and
(7) from which 4 and 8{x) may be solved.
Neglecting convection, equation (7) is a
Bessel differentia) equation which under thd
conditions (8) and (9) has the solution

L[B.(x/L)*]
g, =0, -2 T (10)
b (B
where
I\
5 = (ZésaLTw) ‘ ()
L7
Similarly, if radiation is neglected
Lo[Bdx/Ly™* 4y
0, =8 (12)
’ IG{ﬁc)
where
5. = 1 324, ¥ (37 + 300 m ug\*
C om+ 1\add 1260 v,
% L{m+ 1},’4, (13)

In combined convection and radiation we make
the transformation

7 = X(m+ 1)/2

(14)

3
and obtain the differential equation
dzy dz 4

B (L —my/(1 +m)>
+ Tim + I)ZZ 8. {15)

Neglecting m with respect to | in the radiative
terms, which are approximate in any case, makes
it possible to obtain the solution in the series
form

Sl o

n= n=
where the coefficients C, are given by the recur-
sive formula

B2C,,, + 4B3C

Cpipgm= i T M= 0,1,2... (17

n+2 4(?1 + 2)2 n ( )
with

B?

Co =1 Cl = ““i:". (18)

Introducing the solutions for 64, x) into

equation {4) makes it possible to calculate 4.

Then, the heat flows and temperature fields may

easily be found with conventional methods [6].

A NUMERICAL SOLUTION

The laminar boundary layer equations for the
velocity and temperature fields in two-dimen-
sional, stationary and incompressible flow are
with viscous heating neglected

ou ov
i 5}; = 0 (19)
ou du du &u
H’é}"f”vg};-—va Vfa—yz (20}
or orT 02T
uE;-{—v 5;%1(7‘{'6‘-;{. (21)

They will be solved here [ 7-9] for the following
boundary conditions

y=0u=0v=0 (22)
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T=TM="T, +Y "  (23)
i=0

y=o u=Ux)=x"Y ux’ (24)
i=o

T=T, (25)

where m, n, u; and t; are arbitrary numbers and
where u,, and t, are nonvanishing.
Now introducing the stream function ¥ as

_W _W
T oy dx

the equation of continuity (19) is identically
satisfied. Then the stream function is expanded
in series form as

X J
o= xm 2 g E (Z‘) f;m x™ (27)
0
j=0

u v = (26)

=
where

7= dyxtm D2 yd ok (28)

Inserting U and ¥ in equations (20), (22) and (24)
and singling out coefficients in x gives a system
of recursive ordinary differential equations and
boundary conditions for the functions f{n).
Having solved this system, the velocity boundary
layer is known.

Because equation (21) is linear, solutions for
each term in equation (23) may be found
separately and then superposed to form the
total solution. It is found suitable to introduce
the solution for one such term in the form

30

J—i
0; =t Z(l‘[) Fi]{n)xj"; Fij=0i>] (29)
Uy

-0
Introducing equations (27) and (29) into equa-
tions (21), (23) and (25) and singling out coeffici-
ents for x gives a recursive system of ordinary
differential equations and boundary conditions
for the functions F;{n). Thus, these functions
may be found for each term in equation (23)
and a summation of the solutions equation (29)
gives the total solution. The detailed calcula-

tions are rather laborious and will be excluded
here.

Now turning to the wedge-shaped solid body
the stationary heat conduction equation will be,
in cylindrical coordinates

a0 100

r?

1 32%0

ot

- 0. (30)
r cr

With continuity in temperature across the solid--
fluid interface, the boundary conditions are

r=L:0=0,=) t,L" (31)
i=o

Pp=o0:0=0(x)= ) tx" (32)
i=0

Furthermore the solution should be finite at
r =0 and symmetric with respect to ¢ = 0.
Note that equation (31) restricts the choice of
the coefficients t,.

A solution which satisfies these conditions
may be written

X

0= Z A,-(l’:)aicos ap

+ Z Bi(lr;) cos b;p (33)
i=0
where
a; = in (34)
b= Qi+ 1) (35)
2a
'Lin
A=t (36)
cosina
4 N e -
Bi=(—1)y—_ A (37
= )n2i+lz_i2n2—b,-2t’ (37
i=1

Here the coefficients B; have been obtained
through developing both membra of the boun-
dary condition (31) into a series of cos b;¢.

We have now expressed the temperatures in
the fluid and in the solid into the as yet unknown
coefficients ;. These coefficients may be obtained
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through satisfying the demand of continuity in
the heat flux across the fluid-solid interface.
This is achieved here by selecting the coefficients
so that the heat fluxes in the fluid and in the solid
as obtained from equations (29) and (33) res-
pectively match each other as well as possible
according to the discrete least square method.

A COMPARISON BETWEEN SOLUTIONS

The numerical and approximate methods
described previously were applied to the prob-
lem of heat transfer from wedge-shaped fins
whose surface temperature distributions had
been determined experimentally [11].

Black-painted fins of copper and iron with
the following data were considered

o = 0041 rad, L = 0-244 m, ¢ = 098

Copper: A, = 405 W/m°C, U(L) = 3-05 m/s,

T, = 300:5°K
Iron: A, = 65 W/m°C, U(L) = 313 m/s,
T, = 300°K.

It was found that the radiative heat flux could
not be neglected. In the numerical method a
value of n = 1 was used together with terms up
to and including t5 and B, in the series (29)
and (33) respectively. Equation (1) was used for
the potential velocity U.
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RG. 2. Comparison of solutions with air as cooling medium.

Figure 2 compares the results from the
approximate, numerical and experimental
methods. As is seen, both the approximate and
the numerical method gives a relatively exact
description of the measured temperature distri-
butions. The difference between the two methods
is less than the difference between either of them
and the experimental results. We therefore con-
sider the approximate method to be sufficiently
accurate for our purpose.

RESULTS AND DISCUSSION

In the previous comparisons with experiments
at ¢ = 098 the radiating effects could not be
neglected. Usually, however, the emissivities are
lower and radiation has less importance. There-
fore we shall study only convective heat transfer
here.

As is seen from equation (12), the temperature
distribution in the wedge is governed by the
parameter f8, which may be rewritten as.

1 324,L\*
m_m+1@Mﬂ0'
Thus, . may be understood as a ratio of the
axial resistance for heat flow in the wedge to
the transverse resistance in the flow. Since the
heat will flow most easily along the path of least
resistance, it follows that a lower value of §,
should give a more uniform temperature distri-
bution. This may also be seen from equation (12).
Therefore, the case of a uniform temperature
distribution which is usually adopted in heat
transfer calculations is realizable only at e.g.
infinite heat conductivity in the wall. The in-
fluence of a finite heat conductivity is then to
give rise to axial temperature variations. This
tendency has already been found in Fig. 2.
We may easily derive the following character-
istic dimensionless number

(38)

1
Nu,Re;* = ,( (39)

A

37 + 300 m\:
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In practical calculations, it is usually assumed
that the heat flow into the fluid may be found
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without taking into account the heat conduction
in the wedge. The temperature is then prescribed
at the surface and the corresponding value of
Nu,Re;* is found. Usually Nu,Re;* is taken
with its value at a uniform surface temperature
[6], after what 4 may be found from equation
(39) and the surface temperature 6, from equa-
tion (12).

But such a choice is clearly unrealistic because,
as was said previously, the surface temperature
will not be uniform at finite heat conductivities.

In the coupled theory, i.e. taking into account
the heat conduction in the wedge, 4 is calculated
from equations (4) and (12). The corresponding
values of Nu,Re] %, as calculated from equation
(39), are shown in Fig. 3 for some possible
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F1G. 3. The variation of Nu,Re; * with the heat conductivity
of the wedge for various cooling media.

cooling media. The data used in this and the
following calculations are, excluding /, the same
as those previously given for iron. As is seen,
Nu,Re;* varies considerably with A, the values
of [6] being obtained asymptotically at infinite
heat conductivities.

These variations indicate that using the
asymptotic values could lead to large errors in
calculations of the temperature distributions
and heat flows. With air as the cooling medium,
Fig. 4 compares the temperature distributions
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obtained by using the asymptotic values of
Nu,Re; %, ie. those given in [6], with the corres-
ponding results from the coupled theory. It is
found that the differences may be considerable
at lower heat conductivities. Those differences
should be still larger for the other cooling media
because air shows the least variations of
Nu,Re;* in Fig. 3. Of more direct interest is the
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FG. 4. Comparison of temperature distributions obtained
by using the asymptotic value of Nu,Re; * with correspond-
ing results from coupled theory. Air as cooling medium.

total heat flow from the wedge. As is seen in
Fig. 5 it is underestimated if asymptotic values of
Nu,Re; * are used. For air, this approximation
gives relatively exact results especially at higher
heat conductivities. However, it leads to large
errors for the other cooling media.

Studies of the parameter f, indicates that it is
an increasing function of 1,/ad, Re, and Pr.
Recalling the definition of 8, it follows that the
temperature distribution in the wedge should
be more uniform at larger wedge angles, shorter
fin lengths and lower fluid velocities. Also, since
Nu,Re; * defines the heat flux from the surface,
it seems plausible that it should increase with
B.i.e. with A /ai;. Therefore, it should vary more
with A, at larger values of A,. On the other hand,
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its asymptotic value is determined primarily by
Pr, [6]. These tendencies are found in Fig. 3.
Mercury has e.g. a much higher heat conduc-
tivity A, than has air while its Prandtl number
Pr is considerably lower. Furthermore, the
errors made when neglecting the heat conduc-
tion in the wedge should be smaller in systems
with less variations of Nu,Re;* with 1. There-

1000
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Fi16G. 5. The total heat flow from the wedge using asymptotic
values of Nu,Re;* and coupled theory respectively.

fore, smaller values of 4,/xA; and Re, should
give smaller errors.

In conclusion, it follows from what has been
said here that it is necessary to solve the coupled
heat transfer problem in order to get a good
description of the temperature distributions and
heat flows in a body in a laminar flow. The
assumption of a uniform surface temperature
leads to underestimations of the cooling capacity
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of the fluid. Thus, this should be a conservative
method. Lastly, for wedges, the approximate
method given here should be a valuable tool of
analysis because it is almost exact and demands
relatively little calculation.
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TRANSFERT THERMIQUE A UN ECOULEMENT LAMINAIRE PAR DES
CORPS EN FORME DE DIEDRE AVEC CONDUCTIVITE THERMIQUE LIMITEE

Résumé-- On considére le probléme du transfert thermique d’une ailette en forme de diédre dans un
écoulement laminaire. Les équations d’énergie pour le fluide et le corps solide sont résolues simultanément
sous les conditions de continuité du flux thermique et de la température a I'interface.

On a analysé I'influence de la conduction thermique dans le diédre a I'aide d’'une méthode intégrale de
résolution. On montre que cette méthode est en bon accord avec une méthode numérique basée sur la
technique de Blasius et aussi avec des expériences dans lesquelles intervient le rayonnement.

Des résultats numériques sont donnés pour divers matériaux du diédre et divers fluides.

WARMEUBERTRAGUNG IN LAMINARER STROMUNG AN KEILFORMIGEN RIPPEN
MIT ENDLICHER WARMELEITFAHIGKEIT

Zusammenfassung—Es wird das Problem des Wirmeiibergangs auf eine endliche keilférmige Rippe in

laminarer Stromung untersucht. Die Energiegleichungen fiir Fluid und Rippe werden gleichzeitig geldst

unter den Bedingungen eines kontinuierlichen Verlaufs des Wérmestroms und der Temperatur an der

Trennfliche. Der Einfluss der Warmeleitung in der Rippe wird untersucht mit Hilfe einer integralen

Losungsmethode. Es zeigt sich, dass diese Methode gut iibereinstimmt mit einer numerischen Methode

nach Blasius und auch mit Experimenten ohne Beriicksichtigung der Strahlung. Die Ergebnisse in Zahlen
werden fiir verschiedene Rippenmaterialien und verschiedene Strdmungsmedien aufgefiihrt.

TEINIOOTJIAYA TEJ B ®OPME KJMHA [IPU JIAMUHAPHOM OBTEKAHUU
C YUYETOM TEILTOITPOBOJHOCTH

Annoramma—PacemoTpena  sagaua  mepenoca Tewaa Ko pebpy  RIMHOOGpasHON  (OpMbL
HOHEYHOH AJIMNBLY PaBHCHMA DHEPrUH I HHAOCTH M TBEp0r0 TeJa PElIAlTes COBMECTHO
NpH yCAOBHH HENPepEIBHOCTH TENJIOBOrO TNMOTOKA I TeMIepaTypbl HA MOBEPXHOCTH pir3lend.
Bamauue TensonpoBOgHOCTH B KJHHE HCCJIELYeTCA ¢ INOMOIIbI HHTErpasbHOIO MeTO[d.
Ilorkaszano, 4TO aTOT MeTO)[ /@eT XOpOllee COOTBETCTBUE ¢ HHCICHHBIM pEIIeHHEM MeTojid
DGoasuyca, a Takme ¢ OKCUEPHUMEHTAJBHBIMU JAHHBIMH ¢ yueToM nssydveHus. ITpusejernn
YHCJICHHBIE Pe3yJbTaThl JJIA PA3IUYILIX MATePHATIOR KIHHA U PA3TUUHBIX KU KOCTE]



