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Abstract- The problem of heat transfer to a finite wedge-shaped fin in a laminar flow is considered. The 
energy equations for the fluid and the solid body are solved simultaneously under the conditions of con- 
tinuity in heat flux and temperature at the interface. The influence of heat conduction in the wedge is 
investigated using an integral method of solution. This method is shown to be in good agreement with a 
numerical method based on the Blasius technique and also with experiments provided that radiation is 

taken into account. Numerical results are given for various wedge materials and fluids. 

NOMENCLATURE 

fin breadth : 
tin length : 
dimensionless constant ; 
dimensionless constant ; 
Nusselt number ; 
Prandtl number ; 
total heat flow from the fin; 
Reynolds number ; 
radial coordinate, Fig. 1: 
temperature : 
potential velocity : 
boundary layer velocities ; 
coordinate along the wall, Fig. 1: 
coordinate normal to the wall, Fig. 1: 
transformed coordinate. 

Greek letters 

4 half of leading edge angle, Fig. 1: 

B, dimensionless parameter ; 

4 boundary layer thickness : 

4 dimensionless parameter ; 

-5 emissivity ; 

73 dimensionless coordinate : 

INTRODUCTION 

IN THE analysis of heat convection to solid bodies 
it is common practice to prescribe the tempera- 
ture, the heat flux or a combination of the two 
at the solid-fluid interfaces. In most real cases, 
however, the boundary conditions cannot be 

__~ 
* 

known a priori. It is then necessary to solve the 
Presently at Volvo Flygmotor AB, Trollhattan. Sweden. energy equations for the fluid and the solid body 
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0, temperature excess = T - T, : 
ti, heat diffusivity ; 

A heat conductivity : 

V, kinematic viscosity: 

$7 

Stefan-Boltzmann constant: 
angular coordinate, Fig. 1: 

*2 stream function. 

Subscripts 

b, base of the wedge : 
c, convection ; 
f, fluid: 

r> radiation : 

s, solid or surface ; 

t, thermal boundary layer : 
L‘. velocity boundary layer : 
cc, free stream. 
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simultaneously under the conditions of con- 
tinuity in heat flux and temperature at the 
boundaries. This problem is rather complicated 
and it has received relatively little attention in 
the literature. 

In some works, simplifying assumptions as 
regards the flow held are introduced. Thus, 
Perelman [l] studied the problem of slip flow 
around a body with distributed heat sources. 
Chu and Bankoff [2] treated heat transfer to 
slug flow between flat plates and in a circular 
tube. Sell and Hudson [3] considered the prob- 
lem of heat transfer to a slug flow past a flat plate 
and Davies et al. [4] studied the effect of the 
conduction in the wall on the heat transfer to 
Poiseuille-Couette flow between parallel plates. 
Lastly, an approximate method suitable for 
cases in which the boundary conditions at the 
wall is either an approximately constant tem- 
perature or an approximately constant heat 
flux were given by Rotem [5]. 

Especially simple solutions are obtained if a 
uniform temperature is prescribed at the solid- 
fluid interfaces. Here, we will investigate the 
exactness of such solutions for a wedge [6] by 
comparing them with the solutions to the more 
realistic case of continuity in heat flux and tem- 
perature at the interfaces. For this investigation, 
we develop an integral method which is shown 
to be in good agreement with the numerical 
method based on an extension of the Blasius 
technique [7-93 and also with experiments pro- 
vided that radiation is taken into account. 

AA’ APPROXIMATE SOLUTION 

Consider laminar flow of an incompressible 
fluid past a finite wedge as shown in Fig. 1. 
With the potential wedge flow velocity given by 

where 

u = u()xm (1) 

WL = __ (2) n--cr 

and u0 a constant, and with 

6, = AS, (3) 

where A is a constant, we obtain the following 
relation by applying the conventional momen- 
tum and energy integral methods [6] 

f?ls(x)x’“- l)‘* dx 
37+3oOmb 

= 
630 Pr es(L)Lcm+ lV2 

(4) 

from which A may be found once 0, is known. 

FIG. 1. The system considered. 

For A < 1 we have 

F(A)=$d’-&A4+&A5 (5) 

G(A)=$A2 -&A3+&A4-&A5 

and for A > 1 

33 2 
F(A)= -10+10A+15A-’ 

l;oA-3+LA-4 -_ 
180 

(6) 

G(A)=&&-OA-l +&oA-3-- 1 A-t 
3024 

If the wedge is sufticiently thin i.e. rn << 1, then 
its temperature may be assumed to vary with r 
only, i.e. to be equal to e,(r). This satisfies the 
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demand for continuity in temperature across 
the fluid-solid interface where r = x. 

Then, with a hnearized tem~rature depend- 
ence of the radiative heat flux, a heat balance 
for an element of the wedge as shown in Fig. 1 
gives [lo] 

= 2& [ - 37 + 3OOm ug 

A 
( -- > - f l/Z 

1260 
$nr 

v, 
> 

1 

If the temperature is prescribed at the base of the 
wedge, the boundary conditions to equation (7) 
will be 

@JO) finite (8) 

G,(L) = @& = constant. (91 

We now have two relations, i.e. equations (4) and 
(7) from which d and 8,(x) may be solved. 

Neglecting convection, equation (7) is a 
Bessel differential equation which under thud 
conditions (8) and (9) has the solution equation (4) makes it possible to cafculate A. 

Then, the heat flows and temperature fjelds may 
(f 0) easily be found with conventional methods [6). 

A NUMERICAL SOLUTIOA' where 

Similarly, if radiation is neglected 

where 

and obtain the differential equation 

Neglecting m with respect to 1 in the radiative 
terms, which are approximate in any case, makes 
it possible to obtain the solution in the series 
form 

where the coefficients C% are given by the recur- 
sive formula 

with 

Introducing the solutions for 85{A, _r) into 

The laminar boundary layer equations for the 

(111 velocity and temperature fields in two-dimen- 
sional, stationary and incompressible flow are 
with viscous heating neglected 

(12? g+gz20 . I 

(191 

aT aT a2T 

In combined convection and radiation we make 
the transformation 

They will besolved here [?-93 for the fo~~ow~~g 
boundary conditions 

z = XW+ 012 (14) y=o:u=u==o (22) 
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T = T,(x) = T, + f tk?” (23) 
i=O 

r) 

y = x : u = U(x) = ,P c UjP (24) 
i=O 

T = 76, (25) 

where WC, n, ui and li are arbitrary numbers and 

where it0 and to are nonvanishing. 

Now introducing the stream function t/j as 

% a* u=- 
8L. 

L’= -?F (26? 

the equation of continuity (19) is identically 

satisfied. Then the stream function is expanded 

in series form as 

X 

$ = .Y Cm+ U/Z uft \,j. 

CC 1’ 
; ‘j;(e) .P (27) 

j=O 

where 

V = &Cm 1 l/Z u$ ,,I ;, (28) 

Inserting U and $ in equations (20), (22) and (24) 

and singling out coefficients in I gives a system 
of recursive ordinary differential equations and 

boundary conditions for the functions fjr). 

Having solved this system, the velocity boundary 

layer is known. 
Because equation (21) is linear, solutions for 

each term in equation (23) may be found 

separately and then superposed to form the 
total solution. It is found suitable to introduce 

the solution for one such term in the form 

oi = t, 
” I 

CC- -) 

1-i 

uo 
Fijq)xj”: Fij = 0 i > j. (29) 

i-0 

Introducing equations (27) and (29) into equa- 
tions (21), (23) and (25) and singling out coetfici- 
ents for x gives a recursive system of ordinary 
differential equations and boundary conditions 
for the functions Fi~rl). Thus, these functions 
may be found for each term in equation (23) 
and a summation of the solutions equation (29) 
gives the total solution. The detailed calcula- 

tions are rather laborious and will be excluded 
here. 

Now turning to the wedge-shaped solid body 

the stationary heat conduction equation will be, 

in cylindrical coordinates 

~__ + A’“0 _I 
F26, 
Jr2 r ?r 

l (72e _ 0, 

r2 (‘4’ 
(30) 

With continuity in temperature across the solid-- 

fluid interface, the boundary conditions are 

r= L:H=O,=i$o tiP (31) 

f$ = cx: e = H,(x) = f fix? (32) 
i=O 

Furthermore the solution should be finite at 

r =‘O and symmetric with respect to 4 = 0. 

Note that equation (31) restricts the choice of 

the coefficients ti. 
A solution which satisfies these conditions 

may be written 

X 

c 0 

aI 
e= Ai r cosqb 

L 
i=o m 

where 

+ (33) 

i- 0 

ui = in (34) 

(35) 

(36) 

B, = ( - l)$& 
c 

pi:” h2 t,L’“. (37) 
I 

j= 1 

Here the coefficients Bi have been obtained 
through developing both membra of the boun- 
dary condition (31) into a series of cos bi4. 

We have now expressed the temperatures in 
the fluid and in the solid into the as yet unknown 
coefficients ti. These coeflicients may be obtained 
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through satisfying the demand of continuity in 
the heat flux across the fluid-solid interface. 
This is achieved here by selecting the coefficients 
so that the heat fluxes in the fluid and in the solid 
as obtained from equations (29) and (33) res- 
pectively match each other as well as possible 
according to the discrete least square method. 

A COMPARISON BETWEEN SOLUTIONS 

The numerical and approximate methods 
described previously were applied to the prob- 
lem of heat transfer from wedge-shaped fins 
whose surface temperature distributions had 
been determined experimentally [ 111. 

Black-painted tins of copper and iron with 
the following data were considered 

a = 0.041 rad, L = 0.244 m, E = @98 
Copper : /2, = 405 W/m”C, U(L) = 3.05 m/s, 

T, = 3005°K 
Iron: i, = 65 W/m”C, U(L) = 3.13 m/s, 

T, = 300°K. 
It was found that the radiative heat flux could 

not be neglected. In the numerical method a 
value of n = 1 was used together with terms up 
to and including t, and B,,, in the series (29) 
and (33) respectively. Equation (1) was used for 
the potential velocity U. 

- Experimcniol 

- - - Numerical 

-.- Approximotive 

FIG. 2. Comparison of solutions with air as cooling medium. 

Figure 2 compares the results from the 
approximate, numerical and experimental 
methods. As is seen, both the approximate and 
the numerical method gives a relatively exact 
description of the measured temperature distri- 
butions. The difference between the two methods 
is less than the difference between either of them 
and the experimental results. We therefore con- 
sider the approximate method to be sufficiently 
accurate for our purpose. 

RESULTS AND DISCUSSION 

In the previous comparisons with experiments 
at E = 0.98 the radiating effects could not be 
neglected. Usually, however, the emissivities are 
lower and radiation has less importance. There- 
fore we shall study only convective heat transfer 
here. 

As is seen from equation (12) the temperature 
distribution in the wedge is governed by the 
parameter p, which may be rewritten as. 

(38) 

Thus, /I, may be understood as a ratio of the 
axial resistance for heat flow in the wedge to 
the transverse resistance in the flow. Since the 
heat will flow most easily along the path of least 
resistance, it follows that a lower value of fl, 
should give a more uniform temperature distri- 
bution. This may also be seen from equation (12). 
Therefore, the case of a uniform temperature 
distribution which is usually adopted in heat 
transfer calculations is realizable only at e.g. 
infinite heat conductivity in the wall. The in- 
fluence of a finite heat conductivity is then to 
give rise to axial temperature variations. This 
tendency has already been found in Fig. 2. 

We may easily derive the following character- 
istic dimensionless number 

Nu,Re;+ = ,(37 :i:““>‘. (39) 

In practical calculations, it is usually assumed 
that the heat flow into the fluid may be found 
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without taking into account the heat conduction 
in the wedge. The temperature is then prescribed 
at the surface and the corresponding value of 
Nu,Re;* is found. Usually Nu,Re;* is taken 
with its value at a uniform surface temperature 
[6], after what A may be found from equation 
(39) and the surface temperature 0, from equa- 
tion (12). 

But such a choice is clearly unrealistic because, 
as was said previously, the surface temperature 
will not be uniform at finite heat conductivities. 

In the coupled theory, i.e. taking into account 
the heat conduction in the wedge, A is calculated 
from equations (4) and (12). The corresponding 
values of Nu,Re;*, as calculated from equation 
(39), are shown in Fig. 3 for some possible 
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Rc. 3. The variation of Nu,Re;* with the heat conductivity 
of the wedge for various cooling media. 

cooling media. The data used in this and the 
following calculations are, excluding &, the same 
as those previously given for iron. As is seen, 
Nu,Re.J* varies considerably with I, the values 
of [6] being obtained asymptotically at infinite 
heat conductivities. 

These variations indicate that using the 
asymptotic values could lead to large errors in 
calculations of the temperature distributions 
and heat flows. With air as the cooling medium, 
Fig. 4 compares the temperature distributions 

obtained by using the asymptotic values of 
Nu,Re;*, i.e. those given in [6], with the corres- 
ponding results from the coupled theory. It is 
found that the differences may be considerable 
at lower heat conductivities. Those differences 
should be still larger for the other cooling media 
because air shows the least variations of 
Nu,Re;* in Fig. 3. Of more direct interest is the 

I I I I 

0 02 04 0.6 08 

X/L 

FIG. 4. Comparison of temperature distributions obtained 
by using the asymptotic value of Nu,RcJt with correspond- 

ing results from coupled theory. Air as cooling medium. 

total heat flow from the wedge. As is seen in 
Fig. 5 it is underestimated if asymptotic values of 
Nu,Re;” are used. For air, this approximation 
gives relatively exact results especially at higher 
heat conductivities. However, it leads to large 
errors for the other cooling media. 

Studies of the parameter PC indicates that it is 
an increasing function of 1,./a&, Re, and Pr. 
Recalling the definition of /I,, it follows that the 
temperature distribution in the wedge should 
be more uniform at larger wedge angles, shorter 
tin lengths and lower fluid velocities. Also, since 
Nu,Re;* defines the heat flux from the surface, 
it seems plausible that it should increase with 
& i.e. with I,-/al,. Therefore, it should vary more 
with 1, at larger values of 1,. On the other hand, 
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its asymptotic value is determined primarily by 
Pr, [6]. These tendencies are found in Fig. 3. 
Mercury has e.g. a much higher heat conduc- 
tivity AX than has air while its Prandtl number 
Pr is considerably lower. Furthermore, the 
errors made when neglecting the heat conduc- 
tion in the wedge should be smaller in systems 
with less variations of Nu,Rc;* with Ah. There- 

of the fluid. Thus, this should be a conservative 
method. Lastly, for wedges, the approximate 
method given here should be a valuable tool of 
analysis because it is almost exact and demands 
relatively little calculation. 
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FIG. 5. The total heat flow from the wedge using asymptotic 
values of Nu,Re;* and coupled theory respectively. 

fore, smaller values of ~,#& and Re, should 
give smaller errors. 

In conclusion, it follows from what has been 
said here that it is necessary to solve the coupled 
heat transfer problem in order to get a good 
description of the temperature distributions and 
heat flows in a body in a laminar flow. The 
assumption of a uniform surface temperature 
leads to underestimations of the cooling capacity 
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TRANSFERT THERMIQUE A UN ECOULEMENT LAMINAIRE PAR DES 
CORPS EN FORME DE DIEDRE AVEC CONDUCTIVITE THERMIQUE LIMITEE 

Rhsmn6 On considtre le probltme du transfer? thermique d’une ailette en forme de diedre dans un 
ecoulement laminaire. Les equations d’tnergie pour le Iluide et le corps solide sont resolues simultantment 
sous les conditions de continuitt du flux thermique et de la temperature a I’interface. 

On a analyse I’influence de la conduction thermique dans le ditdre a I’aide d’une mtthode inttgrale de 
resolution. On montre que cette mtthode est en bon accord avec une methode numerique baste sur la 
technique de Blasius et aussi avec des experiences dans lesquelles intervient le rayonnement. 

Des rtsultats numeriques sont donnes pour divers mattriaux du d&Ire et divers fluides. 

WARMEUBERTRAGUNG IN LAMINARER STRijMUNG AN KEILFijRMIGEN RIPPEN 
MIT ENDLICHER WARMELEITFAHIGKEIT 

Zusammenfassung-Es wird das Problem des Warmetibergangs auf eine endliche keilfiirmige Rippe in 
laminarer Stromung untersucht. Die Energiegleichungen fiir Fluid und Rippe werden gleichzeitig gel&t 
unter den Bedingungen eines kontinuierlichen Verlaufs des Warmestroms und der Temperatur an der 
Trennfllche. Der Einfluss der Wlrmeleitung in der Rippe wird untersucht mit Hilfe einer integralen 
Losungsmethode. Es zeigt sich, dass diese Methode gut tibereinstimmt mit einer numerischen Methode 
nach Blasius und such mit Experimenten ohne Beriicksichtigung der Strahlung. Die Ergebnisse in Zahlen 

werden fiir verschiedene Rippenmaterialien und verschiedene Striimungsmedien aufgefiihrt. 

AHHOTaqasi-PaCCMoTpeHa :la~a’la Ilt!~1eJJOCa TCJJ;IB Ji J)t’fiJJy J<;JLJJIOO~~KIIJOii ~O~‘MJ>I 

KOHeqHOii $IIlJIbIj’ paBHCHHH 3H,?~I?lJl ;&IF, FKIJ~OCTII II TBCFJAOJ’O Tt?.“kI ~eJlJ~JOTCF1 CORMCCTHO 

JJPIJ \:C.?OBIiA HelIpepI~IBJJOCTIJ Tt?JlJIOJlOrO JIOTOKa II Tt?MJlPJJ”T~~‘bJ JIa IJOJWJIXHWTI~ J’;‘:J~eJJ;I. 

Iinnnune TNJJIOIJpOBO~JIOCTLl 11 JijIIlHe JlCCJJe~peTCH c 11O~JOII~bJO IlJJT6?rpa~bHO~O \leTO&a. 

~IOJtaGlHO, ‘JTO 3TOT MeTO& #ACT XOJ~OIJ~W COOTIJeTCTBM6? (‘ ~lJl(‘.l~‘HHbJI\J ~eJ1JeHIle~J \ll?TO,~Ll 

kJa:lHj%I, a TaKltEC C 3J~CJI~~Jlll~JIT~.rlbRlJMll ~LIIJJIbIMII C yVPT0.M Il:JJl2;YeHHFI. ~~‘W;~~~JlI,J 

‘JJlC;II’tIHbJIP JK!:Jj’JJbTaTJ,J ,[JJFJ pa:J;rIlllJJI~IX M ;tTPJJJIa.?OJJ Ji;JJlH8 II ~la:l.lLJ~IJ~I.JX HFM;lliOCTeii 


